Mader's conjecture for graphs with small connectivity

نویسندگان

چکیده

Mader conjectured that for any tree T $T$ of order m $m$ , every k $k$ -connected graph G $G$ with minimum degree at least ⌊ 3 2 ⌋ + − 1 $\lfloor \frac{3k}{2}\rfloor +m-1$ contains a subtree ′ ≅ $T^{\prime} \cong T$ such V ( ) $G-V(T^{\prime} )$ is -connected. In this article, we give characterization subgraph to contain an embedding specified avoiding some vertex. As corollary, confirm Mader's conjecture ≤ $k\le 3$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity

Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...

متن کامل

Gallai's path decomposition conjecture for graphs of small maximum degree

Gallai’s path decomposition conjecture states that the edges of any connected graph on n vertices can be decomposed into at most n+1 2 paths. We confirm that conjecture for all graphs with maximum degree at most five.

متن کامل

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

متن کامل

Eccentric Connectivity Index of Some Dendrimer Graphs

The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.

متن کامل

Small graphs with exactly two non-negative eigenvalues

Let $G$ be a graph with eigenvalues $lambda_1(G)geqcdotsgeqlambda_n(G)$. In this paper we find all simple graphs $G$ such that $G$ has at most twelve vertices and $G$ has exactly two non-negative eigenvalues. In other words we find all graphs $G$ on $n$ vertices such that $nleq12$ and $lambda_1(G)geq0$, $lambda_2(G)geq0$ and $lambda_3(G)0$, $lambda_2(G)>0$ and $lambda_3(G)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2022

ISSN: ['0364-9024', '1097-0118']

DOI: https://doi.org/10.1002/jgt.22831